Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/34752
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ameur, Yacin | - |
dc.contributor.author | Ortega Cerdà, Joaquim | - |
dc.date.accessioned | 2013-04-22T08:52:37Z | - |
dc.date.available | 2013-04-22T08:52:37Z | - |
dc.date.issued | 2012-10-01 | - |
dc.identifier.issn | 0022-1236 | - |
dc.identifier.uri | http://hdl.handle.net/2445/34752 | - |
dc.description.abstract | Let $Q$ be a suitable real function on $C$. An $n$-Fekete set corresponding to $Q$ is a subset ${Z_{n1}},\dotsb, Z_{nn}}$ of $C$ which maximizes the expression $\Pi^n_i_{<j}|Z_{ni} - Z_{nj}|^2 e^-^{n(Q(Z_n_1)+\dotsb+Q(Z_{nn}))}$. It is well known that, under reasonable conditions on $Q$, there is a compact set $S$ known as the 'droplet' such that the measures $\mu_n n^{-1} (\delta_{zn1}+\dots+\delta_{znn})$ converges to the equilibrium measure $\Delta Q.1 _S$d$A$ as $n \rightarrow \infty$. In this note we prove that Fekete sets are, in a sense, maximally spread out with respect to the equilibrium measure. In general, our results apply only to a part of the Fekete set, which is at a certain distance away from the boundary of the droplet. However, for the potential $Q=|Z|^2$ we obtain results which hold globally, and we conjecture that such global results are true for a wide range of potentials. | - |
dc.format.extent | 37 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.isformatof | Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.jfa.2012.06.011 | - |
dc.relation.ispartof | Journal of Functional Analysis, 2012, vol. 263, num. 7, p. 1825-1861 | - |
dc.relation.uri | http://dx.doi.org/10.1016/j.jfa.2012.06.011 | - |
dc.rights | (c) Elsevier, 2012 | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Teoria del potencial (Matemàtica) | - |
dc.subject.other | Potential theory (Mathematics) | - |
dc.title | Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 615425 | - |
dc.date.updated | 2013-04-22T08:52:37Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
615425.pdf | 252.26 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.