Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/47369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalderón Moreno, Isabel-
dc.contributor.authorPalacín Cabañas, Cruz-
dc.contributor.authorTuron Barrera, Xavier-
dc.date.accessioned2013-10-29T13:03:17Z-
dc.date.available2013-10-29T13:03:17Z-
dc.date.issued2009-07-
dc.identifier.issn0962-1083-
dc.identifier.urihttp://hdl.handle.net/2445/47369-
dc.description.abstractTemporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90-100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.-
dc.format.extent30 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.isformatofVersió preprint del document publicat a: http://dx.doi.org/10.1111/j.1365-294X.2009.04239.x-
dc.relation.ispartofMolecular Ecology, 2009, vol. 18, num. 14, p. 3036-3049-
dc.relation.urihttp://dx.doi.org/10.1111/j.1365-294X.2009.04239.x-
dc.rights(c) John Wiley & Sons, 2009-
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)-
dc.subject.classificationEquinoderms-
dc.subject.classificationEriçons de mar-
dc.subject.classificationGenètica de poblacions-
dc.subject.classificationMediterrània (Mar : nord-oest)-
dc.subject.otherEchinodermata-
dc.subject.otherSea urchins-
dc.subject.otherPopulation Genetics-
dc.subject.otherMediterranean Sea (northwest)-
dc.titleMicrosatellite markers reveal shallow genetic differentiation between cohorts of the common sea urchin Paracentrotus lividus (Lamarck) in northwest Mediterranean-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/submittedVersion-
dc.identifier.idgrec567770-
dc.date.updated2013-10-29T13:03:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
567770.pdf271.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.