Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/48348
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMadurga Díez, Sergio-
dc.contributor.authorRey-Castro, Carlos-
dc.contributor.authorDavid, Calin-
dc.contributor.authorPastor, Isabel-
dc.contributor.authorGarcés, Josep Lluís-
dc.contributor.authorVilaseca i Font, Eudald-
dc.contributor.authorPuy, Jaume-
dc.contributor.authorMas i Pujadas, Francesc-
dc.date.accessioned2013-12-09T09:40:38Z-
dc.date.available2013-12-09T09:40:38Z-
dc.date.issued2011-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/2445/48348-
dc.description.abstractIn this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of p H and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1063/1.3658484-
dc.relation.ispartofJournal of Chemical Physics, 2011, vol. 135, num. 18, p. 184103-1-184103-10-
dc.relation.urihttp://dx.doi.org/10.1063/1.3658484-
dc.rights(c) American Institute of Physics , 2011-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationSimulació per ordinador-
dc.subject.classificationMètode de Montecarlo-
dc.subject.classificationIons-
dc.subject.classificationElectrostàtica-
dc.subject.classificationMecànica estadística-
dc.subject.otherComputer simulation-
dc.subject.otherMonte Carlo method-
dc.subject.otherIons-
dc.subject.otherElectrostatics-
dc.subject.otherStatistical mechanics-
dc.titleA semi-grand canonical Monte Carlo simulation model for ion binding to ionizable surfaces: proton binding of carboxylated latex particles as a case study-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec569372-
dc.date.updated2013-12-09T09:40:38Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid22088048-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
569372.pdf747.38 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.