Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/58593
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeller Amado, Sara-
dc.contributor.authorGranell, Clara-
dc.contributor.authorDe Domenico, M. (Manlio), 1984--
dc.contributor.authorSoriano i Fradera, Jordi-
dc.contributor.authorGómez, SERGIO-
dc.contributor.authorArenas, Àlex-
dc.date.accessioned2014-10-14T12:25:36Z-
dc.date.available2014-10-14T12:25:36Z-
dc.date.issued2014-09-04-
dc.identifier.issn1553-734X-
dc.identifier.urihttp://hdl.handle.net/2445/58593-
dc.description.abstractThe analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a"connectivity backbone" in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pcbi.1003796-
dc.relation.ispartofPLoS Computational Biology, 2014, vol. 10, num. 9, p. e100396-
dc.relation.urihttp://dx.doi.org/10.1371/journal.pcbi.1003796-
dc.rightscc-by (c) Teller, Sara et al., 2014-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationNeurones-
dc.subject.classificationXarxes neuronals (Neurobiologia)-
dc.subject.classificationInteracció cel·lular-
dc.subject.otherNeurons-
dc.subject.otherNeural networks (Neurobiology)-
dc.subject.otherCell interaction-
dc.titleEmergence of assortative mixing between clusters of cultured neurons-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec644006-
dc.date.updated2014-10-14T12:25:38Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/317532/EU//MULTIPLEX-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid25188377-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
644006.pdf1.2 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons