Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/59734
Title: Environmental processes in Rano Aroi (Ester Island) peat geochemistry forced by climate variability during the last 70 kyr
Author: Margalef Marrasé, Olga
Martínez-Cortizas, A.
Kylander, M.
Pla, S.
Cañellas Boltà, Núria
Pueyo Mur, Juan José
Sáez, Alberto
Valero Garcés, Blas Lorenzo
Giralt Romeu, Santiago
Keywords: Paleoclimatologia
Polinèsia
Paleoclimatology
Polynesia
Issue Date: 12-Oct-2014
Publisher: Elsevier B.V.
Abstract: We analyze the geochemistry of Rano Aroi mire record (Easter Island) using bulk peat composition (C, N, S) and stable isotopes (δ13C, δ15N, δ34S) and major, minor and trace elemental compositions obtained by ICP-AES (Al, Ti, Zr, Sc, V, Y, Fe, Mn, Th, Ba, Ca,Mg and Sr). Peat geochemistry and the pollen record are used to reconstruct the environmental changes during the last 70 kyr BP. Principal component analysis on ICP-AES data revealed that three main components account for the chemical signatures of the peat. The first component, characterized by lithogenic elements (combined signal of V, Al, Sc, Y, Cr, Cd, Ti, Zr and Cu), evidences long-term changes in the basal fluxes of mineralmaterial into themire. This component, in combination with stable isotopes and pollen data suggests a link between soil erosion and vegetation cover changes in the Rano Aroiwatershed. The second component is identified by the signal of Fe, Mn, Th, Ba, Zr and Ti, and is indicative of strong runoff events during enhanced precipitation periods. The third component (tied mainly to Ca, Sr and Mg) reflects a strong peat oxidation event that occurred during an arid periodwithmore frequent droughts, sometime between 39 and 31 kyr BP. Correlation coefficients and a multiple regression model (PCR analysis) between peat organic chemistry and the principal components of ICP-AES analysis were calculated. Isotope chemistry of the peat organic matter further contributes to define Rano Aroi environmental history: δ13C data corroborates a vegetation shift documented by the palynological record from C4 to C3 between 55 and 45 cal kyr BP; the δ15N record identifies periods of changes in mire productivity and denitrification processes, while the δ34S peat signature indicates a marine origin of S and significant diagenetic cycling. The geochemical and environmental evolution of Rano Aroi mire is coherent with the regional climatic variability and suggests that climate was the main forcing in mire evolution during the last 70 kyr BP. The coupling of geochemical and biological proxies improves our ability to decipher depositional processes in tropical and subtropical peatlands and to use these sequences for paleoenvironmental and paleoclimate reconstructions.
Note: Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.palaeo.2014.09.025
It is part of: Palaeogeography Palaeoclimatology Palaeoecology, 2014, vol. 414, p. 438-450
URI: http://hdl.handle.net/2445/59734
Related resource: http://dx.doi.org/10.1016/j.palaeo.2014.09.025
ISSN: 0031-0182
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
630765.pdf1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.