Please use this identifier to cite or link to this item:
Title: Regional Forecasting with Support Vector Regressions: The Case of Spain
Author: Clavería González, Óscar
Monte Moreno, Enric
Torra Porras, Salvador
Keywords: Anàlisi de regressió
Previsió econòmica
Política turística
Desenvolupament econòmic
Xarxes neuronals (Informàtica)
Transmissió de dades
Regression analysis
Economic forecasting
Politics of tourism
Economic development
Neural networks (Computer science)
Data transmission systems
Issue Date: 2015
Publisher: Universitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública
Series/Report no: [WP E-AQR15/06]
[WP E-IR15/07]
Abstract: This study attempts to assess the forecasting accuracy of Support Vector Regression (SVR) with regard to other Artificial Intelligence techniques based on statistical learning. We use two different neural networks and three SVR models that differ by the type of kernel used. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian kernel shows the best forecasting performance. The best predictions are obtained for longer forecast horizons, which suggest the suitability of machine learning techniques for medium and long term forecasting.
Note: Reproducció del document publicat a:
It is part of: IREA – Working Papers, 2015, IR15/07
AQR – Working Papers, 2015, AQR15/06
ISSN: 2014-1254
Appears in Collections:Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
Documents de treball / Informes (Econometria, Estadística i Economia Aplicada)
AQR (Grup d’Anàlisi Quantitativa Regional) – Working Papers

Files in This Item:
File Description SizeFormat 
IR15-007_Claveria.pdf545.04 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons