Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/63530
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClavería González, Óscar-
dc.contributor.authorMonte Moreno, Enric-
dc.contributor.authorTorra Porras, Salvador-
dc.date.accessioned2015-03-03T10:56:30Z-
dc.date.available2015-03-03T10:56:30Z-
dc.date.issued2015-
dc.identifier.issn2014-1254-
dc.identifier.urihttp://hdl.handle.net/2445/63530-
dc.description.abstractBy means of Self-Organizing Maps we cluster fourteen European countries according to the most suitable way to model their agents’ expectations. Using the financial crisis of 2008 as a benchmark, we distinguish between those countries that show a progressive anticipation of the crisis and those where sudden changes in expectations occur. By mapping the trajectory of economic experts’ expectations prior to the recession we find that when there are brisk changes in expectations before impending shocks, Artificial Neural Networks are more suitable than time series models for modelling expectations. Conversely, in countries where expectations show a smooth transition towards recession, ARIMA models show the best forecasting performance. This result demonstrates the usefulness of clustering techniques for selecting the most appropriate method to model and forecast expectations according to their behaviour.-
dc.format.extent25 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherUniversitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública-
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2015/201511.pdf-
dc.relation.ispartofIREA – Working Papers, 2015, IR15/11-
dc.relation.ispartofAQR – Working Papers, 2015, AQR15/08-
dc.relation.ispartofseries[WP E-AQR15/08]-
dc.relation.ispartofseries[WP E-IR15/11]-
dc.rightscc-by-nc-nd, (c) Clavería González et al., 2015-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/-
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))-
dc.subject.classificationPrevisió econòmica-
dc.subject.classificationDesenvolupament econòmic-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationAnàlisi funcional no lineal-
dc.subject.otherEconomic forecasting-
dc.subject.otherEconomic development-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherNonlinear functional analysis-
dc.titleSelf-Organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisiseng
dc.typeinfo:eu-repo/semantics/workingPaper-
dc.date.updated2015-03-03T10:56:30Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:AQR (Grup d’Anàlisi Quantitativa Regional) – Working Papers
Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
Documents de treball / Informes (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
IR15-011_Claveria-Monte.pdf2.35 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons