Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/64126
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMundet i Riera, Ignasi-
dc.contributor.authorSáez Calvo, Carles-
dc.date.accessioned2015-03-17T10:00:08Z-
dc.date.available2015-03-17T10:00:08Z-
dc.date.issued2014-09-14-
dc.identifier.urihttps://hdl.handle.net/2445/64126-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ignasi Mundet i Rieraca
dc.description.abstractThe main goal of this master thesis is to give a self-contained proof of the Gromov compactness theorem for pseudoholomorphic curves and the non-squeezing theorem in symplectic topology. Pseudoholomorphic curves are smooth maps from a Riemann surface into an almost complex manifold that respect the almost complex structures. If the target manifold is a complex manifold, we recover the notion of holomorphic maps, so pseudoholomorphic maps can be seen as the generalization of holomorphic maps to the almost complex setting. Pseudoholomorphic curves were introduced by Gromov in a ground-breaking paper published in 1985, [Gro]. Since then, they have become one of the main tools in the field of symplectic topology.ca
dc.format.extent89 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-sa (c) Carlos Sáez Calvo-
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/-
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationGeometria diferencialcat
dc.subject.classificationVarietats de Riemanncat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherDifferential geometryeng
dc.subject.otherRiemannian manifoldseng
dc.subject.otherMaster's theseseng
dc.titleGromov compactness theorem for pseudoholomorphic curvesca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria599.94 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons