Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/65028
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIgual Muñoz, Laura-
dc.contributor.authorNoguera Ropero, Javier-
dc.date.accessioned2015-04-14T08:57:54Z-
dc.date.available2015-04-14T08:57:54Z-
dc.date.issued2015-01-
dc.identifier.urihttps://hdl.handle.net/2445/65028-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Laura Igual Muñozca
dc.description.abstractThe segmentation of brain structures in Magnetic Resonance Imaging is a challenging problem due to the low contrast and resolution of the structures and the noisy images. The Discriminative Dictionary Learning Segmentation is a classification technique which has been applied for different image processing problems such as compression, image denoising and recently in Magnetic Resonance Imaging segmentation. We consider the segmentation problem as a classification problem and apply Discriminative Dictionary Learning Segmentation to solve it using a patch-based representation and minimising the reconstruction error. The main limitation of this method is that the classification is performed independently for each voxel. We propose to add contextual information for the classification of the image voxels using Stacked Sequential Learning as a second stage. We define a feature vector from the classification results of Multi-class Discriminative Dictionary Learning and apply a decision tree classifier. We validate the proposal using a public database presented in the SATA Challenge. Using the two stages Stacked Sequential Multi-class Discriminative Dictionary Learning Segmentation method, we obtain an improvement of X% with respect to Multi-class Discriminative Dictionary Learning.ca
dc.format.extent64 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-by-sa (c) Javier Noguera Ropero, 2015-
dc.rightscodi: GPL (c) Javier Noguera Ropero, 2015-
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html-
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationImatges per ressonància magnèticacat
dc.subject.classificationIntel·ligència artificial en medicinacat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationVisió per ordinadorca
dc.subject.otherMagnetic resonance imagingeng
dc.subject.otherMedical artificial intelligenceeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherDigital image processingeng
dc.subject.otherComputer visioneng
dc.titleStacked Sequential Multi-class Discriminative Dictionary Learning for Brain MRI Segmentationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
Noguera Ropero Javier_1113988_assignsubmission_file_codi.zipCodi font26.39 MBzipView/Open
memoria.pdfMemòria1.78 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons