Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/66855
Title: | Common trends in international tourism demand: Are they useful to forecast tourism predictions? |
Author: | Clavería González, Óscar Monte Moreno, Enric Torra Porras, Salvador |
Keywords: | Previsió econòmica Turisme Desenvolupament econòmic Xarxes neuronals (Informàtica) Economic forecasting Tourism Economic development Neural networks (Computer science) |
Issue Date: | 2015 |
Publisher: | Elsevier Ltd |
Abstract: | This study evaluates whether modelling the existing commont trends in tourism arrivals from all visitor markets to a specific destination can improve tourism predictions. While most tourism forecasting research focuses on univariate methods, we compare the performance of three different Artificial Neural Networks in a multivariate setting that takes into account the correlations in the evolution of inbound international tourism demand to Catalonia (Spain). We find that the multivariate multiple-output approach does not outperform the forecasting performance of the networks when applied country by country, but it significantly outperforms the forecasting performance for total tourist arrivals. |
Note: | Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.tmp.2015.07.013 |
It is part of: | Tourism Management Perspectives , 2015, vol. 16, p. 116-122 |
URI: | https://hdl.handle.net/2445/66855 |
Related resource: | http://dx.doi.org/10.1016/j.tmp.2015.07.013 |
ISSN: | 2211-9736 |
Appears in Collections: | Articles publicats en revistes (Econometria, Estadística i Economia Aplicada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
653980.pdf | 190.23 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.