Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/69315
Title: | Effective Reducibility of Quasi-Periodic Linear Equations close to Constant Coefficients |
Author: | Jorba i Monte, Àngel Ramírez-Ros, Rafael Villanueva, Jordi |
Keywords: | Anàlisi global (Matemàtica) Global analysis (Mathematics) |
Issue Date: | Jan-1997 |
Publisher: | Society for Industrial and Applied Mathematics |
Abstract: | Let us consider the differential equation $$ \dot{x}=(A+\varepsilon Q(t,\varepsilon))x, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where A is an elliptic constant matrix and Q depends on time in a quasi-periodic (and analytic) way. It is also assumed that the eigenvalues of A and the basic frequencies of Q satisfy a diophantine condition. Then it is proved that this system can be reduced to $$ \dot{y}=(A^{*}(\varepsilon)+\varepsilon R^{*}(t,\varepsilon))y, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where $R^{*}$ is exponentially small in $\varepsilon$, and the linear change of variables that performs such a reduction is also quasi-periodic with the same basic frequencies as Q. The results are illustrated and discussed in a practical example. |
Note: | Reproducció del document publicat a: http://dx.doi.org/10.1137/S0036141095280967 |
It is part of: | SIAM Journal on Mathematical Analysis, 1997, vol. 28, num. 1, p. 178-188 |
URI: | https://hdl.handle.net/2445/69315 |
Related resource: | http://dx.doi.org/10.1137/S0036141095280967 |
ISSN: | 0036-1410 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
588682.pdf | 269.92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.