Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/7283
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSelivanov, Vitalyca
dc.contributor.authorSukhomlin, Tatianaca
dc.contributor.authorCentelles Serra, Josep Joanca
dc.contributor.authorLee, Paul Wai Nangca
dc.contributor.authorCascante i Serratosa, Martaca
dc.date.accessioned2009-03-20T13:33:07Z-
dc.date.available2009-03-20T13:33:07Z-
dc.date.issued2006ca
dc.identifier.issn1471-2202ca
dc.identifier.urihttp://hdl.handle.net/2445/7283-
dc.description.abstractA current trend in neuroscience research is the use of stable isotope tracers in order to address metabolic processes in vivo. The tracers produce a huge number of metabolite forms that differ according to the number and position of labeled isotopes in the carbon skeleton (isotopomers) and such a large variety makes the analysis of isotopomer data highly complex. On the other hand, this multiplicity of forms does provide sufficient information to address cell operation in vivo. By the end of last millennium, a number of tools have been developed for estimation of metabolic flux profile from any possible isotopomer distribution data. However, although well elaborated, these tools were limited to steady state analysis, and the obtained set of fluxes remained disconnected from their biochemical context. In this review we focus on a new numerical analytical approach that integrates kinetic and metabolic flux analysis. The related computational algorithm estimates the dynamic flux based on the time-dependent distribution of all possible isotopomers of metabolic pathway intermediates that are generated from a labeled substrate. The new algorithm connects specific tracer data with enzyme kinetic characteristics, thereby extending the amount of data available for analysis: it uses enzyme kinetic data to estimate the flux profile, and vice versa, for the kinetic analysis it uses in vivo tracer data to reveal the biochemical basis of the estimated metabolic fluxes.ca
dc.format.extent15 p.ca
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherBioMed Centralca
dc.relation.isformatofReproducció del document publicat a http://dx.doi.org/10.1186/1471-2202-7-S1-S7ca
dc.relation.ispartofBMC Neuroscience, 2006, vol. 7 suppl. 1, núm. 7ca
dc.relation.urihttp://dx.doi.org/10.1186/1471-2202-7-S1-S7-
dc.rightscc-by, (c) Selivanov et al., 2006ca
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/ca
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationCinètica enzimàticaca
dc.subject.classificationNeurofisiologiaca
dc.subject.classificationNeuronescat
dc.subject.otherEnzyme kineticsca
dc.subject.otherNeuronal cellca
dc.titleIntegration of enzyme kinetic models and isotopomer distribution analysis for studies of in situ cell operationca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec545960ca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid17118161-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
545960.pdf968.52 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons