Please use this identifier to cite or link to this item:
Title: On the depth of the tangent cone and the growth of the Hilbert function
Author: Elías García, Joan
Keywords: Anells locals
Ideals (Àlgebra)
Funcions característiques
Geometria algebraica
Associated graded rings of ideals
Homological methods
Hilbert-Samuel and Hilbert-Kunz functions
Poincaré series
Local rings and semilocal rings
Issue Date: 1999
Publisher: American Mathematical Society
Abstract: For a d-dimensional Cohen-Macaulay local ring (R,m) we study the depth of the associated graded ring of R with respect to an m-primary ideal I in terms of the Vallabrega-Valla conditions and the length of It+1/JIt, where J is a J minimal reduction of I and t≥ 1. As a corollary we generalize Sally's conjecture on the depth of the associated graded ring with respect to a maximal ideal to m-primary ideals. We also study the growth of the Hilbert function.
Note: Reproducció digital del document publicat en format paper, proporcionada per JSTOR
It is part of: Transactions of the American Mathematical Society, 1999, vol. 351, núm. 10, p. 4027-4042.
ISSN: 1088-6850
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
153816.pdf1.4 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.