Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/7766
Title: | On the depth of the tangent cone and the growth of the Hilbert function |
Author: | Elías García, Joan |
Keywords: | Anells locals Ideals (Àlgebra) Homologia Funcions característiques Geometria algebraica Associated graded rings of ideals Homological methods Hilbert-Samuel and Hilbert-Kunz functions Poincaré series Local rings and semilocal rings |
Issue Date: | 1999 |
Publisher: | American Mathematical Society |
Abstract: | For a d-dimensional Cohen-Macaulay local ring (R,m) we study the depth of the associated graded ring of R with respect to an m-primary ideal I in terms of the Vallabrega-Valla conditions and the length of It+1/JIt, where J is a J minimal reduction of I and t≥ 1. As a corollary we generalize Sally's conjecture on the depth of the associated graded ring with respect to a maximal ideal to m-primary ideals. We also study the growth of the Hilbert function. |
Note: | Reproducció digital del document publicat en format paper, proporcionada per JSTOR http://www.jstor.org/stable/118037 |
It is part of: | Transactions of the American Mathematical Society, 1999, vol. 351, núm. 10, p. 4027-4042. |
URI: | https://hdl.handle.net/2445/7766 |
ISSN: | 1088-6850 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
153816.pdf | 1.4 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.