Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/9171
Title: | Borcherds products and arithmetic intersection theory on Hilbert modular surfaces |
Author: | Bruinier, Jan H. (Jan Hendrik), 1971- Burgos Gil, José I. Kühn, Ulf |
Keywords: | Geometria algebraica aritmètica Teoria de la intersecció Arithmetic aspects of modular and Shimura varieties Hilbert modular surfaces Intersection theory Arithmetic varieties and schemes |
Issue Date: | 2007 |
Publisher: | Duke University Press |
Abstract: | We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors. |
Note: | Reproducció del document publicat a http://dx.doi.org/10.1215/S0012-7094-07-13911-5 |
It is part of: | Duke Mathematical Journal, 2007, vol. 139, núm. 1, p. 1-88. |
URI: | https://hdl.handle.net/2445/9171 |
Related resource: | http://dx.doi.org/10.1215/S0012-7094-07-13911-5 |
ISSN: | 0012-7094 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
555914.pdf | 883.48 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.