Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/96594
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMundet i Riera, Ignasi-
dc.date.accessioned2016-03-17T16:42:48Z-
dc.date.available2016-03-17T16:42:48Z-
dc.date.issued2010-
dc.identifier.issn0002-9947-
dc.identifier.urihttps://hdl.handle.net/2445/96594-
dc.description.abstractConsider a Hamiltonian action of a compact Lie group $ K$ on a Kaehler manifold $ X$ with moment map $ \mu:X\to\mathfrak{k}^*$. Assume that the action of $ K$ extends to a holomorphic action of the complexification $ G$ of $ K$. We characterize which $ G$-orbits in $ X$ intersect $ \mu^{-1}(0)$ in terms of the maximal weights $ \lim_{t\to\infty}\langle\mu(e^{\mathbf{i} ts}\cdot x),s\rangle$, where $ s\in\mathfrak{k}$. We do not impose any a priori restriction on the stabilizer of $ x$. Under some mild restrictions on the action $ K\circlearrowright X$, we view the maximal weights as defining a collection of maps: for each $ x\in X$, $\displaystyle \lambda_x:\partial_{\infty}(K\backslash G)\to\mathbb{R}\cup\{\infty\},$ where $ \partial_{\infty}(K\backslash G)$ is the boundary at infinity of the symmetric space $ K\backslash G$. We prove that $ G\cdot x\cap\mu^{-1}(0)\neq\emptyset$ if: (1) $ \lambda_x$ is everywhere nonnegative, (2) any boundary point $ y$ such that $ \lambda_x(y)=0$ can be connected with a geodesic in $ K\backslash G$ to another boundary point $ y'$ satisfying $ \lambda_x(y')=0$. We also prove that the maximal weight functions are $ G$-equivariant: for any $ g\in G$ and any $ y\in \partial_{\infty}(K\backslash G)$ we have $ \lambda_{g\cdot x}(y)=\lambda_x(y\cdot g)$.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Mathematical Society (AMS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2010-04831-7-
dc.relation.ispartofTransactions of the American Mathematical Society, 2010, vol. 362, p. 5169-5187-
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-2010-04831-7-
dc.rights(c) American Mathematical Society (AMS), 2010-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationGeometria algebraica-
dc.subject.classificationGeometria-
dc.subject.otherAlgebraic geometry-
dc.subject.otherGeometry-
dc.titleA Hilbert-Mumford criterion for polystability in Kahler geometry-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec609881-
dc.date.updated2016-03-17T16:42:53Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
609881.pdf315.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.