Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastán i Vidal, Maria Teresacat
dc.contributor.authorLindgård, Per-Ankercat
dc.description.abstractThe kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.eng
dc.publisherThe American Physical Societycat
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i
dc.relation.ispartofPhysical Review B, 1990, vol. 41, núm. 4, p.
dc.rights(c) The American Physical Society, 1990cat
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationFísica de l'estat sòlidcat
dc.subject.classificationMecànica estadísticacat
dc.subject.otherSolid state physicseng
dc.subject.otherStatistical mechanicseng
dc.titlen=1/4 domain-growth universality class: Crossover to the n=1/2 classeng
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
35439.pdf520.04 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.