Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/98767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShao, Feng-
dc.contributor.authorFan, Jiandong-
dc.contributor.authorHernández Ramírez, Francisco-
dc.contributor.authorFábrega, Cristian-
dc.contributor.authorAndreu Arbella, Teresa-
dc.contributor.authorCabot i Codina, Andreu-
dc.contributor.authorPrades García, Juan Daniel-
dc.contributor.authorLópez, Núria (López Alonso)-
dc.contributor.authorUdrea, Florian-
dc.contributor.authorDe Luca, Andrea-
dc.contributor.authorAli, Syed Zeeshan-
dc.contributor.authorMorante i Lleonart, Joan Ramon-
dc.date.accessioned2016-05-23T14:47:27Z-
dc.date.available2018-04-01T22:01:16Z-
dc.date.issued2016-04-01-
dc.identifier.issn0925-4005-
dc.identifier.urihttp://hdl.handle.net/2445/98767-
dc.description.abstractDielectrophoretic alignment is found to be a simple and efficient method to deposit the solution prepared ZnO nanowires onto micro hot plate substrates. Due to the strong surface effects, positive temperature coefficient for resistance was encountered with ZnO nanowires in the high temperature range (>250 degrees C). The response to ammonia (NH3) was evaluated in isothermal and temperature-pulsed operation mode; the relative higher response observed in the latter case demonstrates that the use of this methodology is a good strategy to improve the performance of metal oxide sensors based on nanomaterials. Here, we evaluate the response to NH3 and qualitatively describe the sensing mechanism in temperature-pulsed mode, highlighting the main differences compared to the standard isothermal methodology.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2015.11.109-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.snb.2015.11.109-
dc.relation.ispartofSensors and Actuators B-Chemical, 2016, vol. 226, p. 110-117-
dc.relation.urihttp://dx.doi.org/10.1016/j.snb.2015.11.109-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationAmoníac-
dc.subject.classificationÒxid de zinc-
dc.subject.classificationSilici-
dc.subject.classificationSemiconductors-
dc.subject.otherAmmonia-
dc.subject.otherZinc oxide-
dc.subject.otherSilicon-
dc.subject.otherSemiconductors-
dc.titleNH3 sensing with self-assembled ZnO-nanowire μHP sensors in isothermal and temperature-pulsed mode-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec660489-
dc.date.updated2016-05-23T14:47:33Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336917/EU//BETTERSENSE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
660489.pdf1.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons