Bahraoui, ZuhairBolancé Losilla, CatalinaPelican, ElenaVernic, Raluca2016-04-072016-04-0720151696-2281https://hdl.handle.net/2445/97120The Sarmanov family of distributions can provide a good model for bivariate random variables and it is used to model dependency in a multivariate setting with given marginals. In this paper, we focus our attention on the bivariate Sarmanov distribution and copula with different truncated extreme value marginal distributions. We compare a global estimation method based on maximizing the full log-likelihood function with the estimation based on maximizing the pseudolog- likelihood function for copula (or partial estimation). Our aim is to estimate two statistics that can be used to evaluate the risk of the sum exceeding a given value. Numerical results using a real data set from the motor insurance sector are presented.22 p.application/pdfengcc-by-nc-nd (c) Bahraoui, Zuhair et al., 2015http://creativecommons.org/licenses/by-nc-nd/3.0/esVariables (Matemàtica)Variables aleatòriesTeoria de distribucions (Anàlisi funcional)Teoria de l'estimacióVariables (Mathematics)Random variablesTheory of distributions (Functional analysis)Estimation theoryOn the bivariate Sarmanov distribution and copula. An application on insurance data using truncated marginal distributionsinfo:eu-repo/semantics/article6559702016-04-07info:eu-repo/semantics/openAccess