Massaneda Clares, Francesc XavierNicolau Nos, ArturThomas, Pascal J.2023-01-202023-01-202019-04-150022-1236https://hdl.handle.net/2445/192389Let $I$ be an inner function in the unit disk $\mathbb{D}$ and let $\mathcal{N}$ denote the Nevanlinna class. We prove that under natural assumptions, Bezout equations in the quotient algebra $\mathcal{N} / I \mathcal{N}$ can be solved if and only if the zeros of $I$ form a finite union of Nevanlinna interpolating sequences. This is in contrast with the situation in the algebra of bounded analytic functions, where being a finite union of interpolating sequences is a sufficient but not necessary condition. An analogous result in the Smirnov class is proved as well as several equivalent descriptions of Blaschke products whose zeros form a finite union of interpolating sequences in the Nevanlinna class.26 p.application/pdfengcc-by-nc-nd (c) Elsevier, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/Teoria de NevanlinnaFuncions de variables complexesTeoria geomètrica de funcionsNevanlinna theoryFunctions of complex variablesGeometric function theoryThe Corona Property in Nevanlinna quotient algebras and interpolating sequencesinfo:eu-repo/semantics/article6950682023-01-20info:eu-repo/semantics/openAccess