Belchí Guillamón, FranciscoNobbe Fisas, Fritz Pere2020-06-122020-06-122020-01-19https://hdl.handle.net/2445/165324Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Francisco Belchí Guillamón[en] Extracting information from data sets that are high-dimensional, incomplete and noisy is generally challenging. The aim of this work is to explain a homology theory for data sets, called Persistent Homology, and the topology and algebra behind it. Moreover, we will show different ways to represent it and finally computing some examples with the help of the GUDHI software for Python.48 p.application/pdfengcc-by-nc-nd (c) Fritz Pere Nobbe Fisas, 2020http://creativecommons.org/licenses/by-nc-nd/3.0/es/Topologia algebraicaTreballs de fi de grauHomologiaAnàlisi multivariablePython (Llenguatge de programació)Algebraic topologyBachelor's thesesHomologyMultivariate analysisPython (Computer program language)Homology and persistent homologyinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess