Ortega Aramburu, Joaquín M.Fàbrega Casamitjana, Joan2019-05-062019-05-0619920214-1493https://hdl.handle.net/2445/132716Let D be a bounded strictly pseudoconvex domain of Cn with C 8 boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D. In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y n D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fa}|a|=m on M, so that there exists a holomorphic function in the Bergman-Sobolev space such that Daf |M = fa for all |a| = m.23 p.application/pdfeng(c) Universitat Autònoma de Barcelona, 1992Espais de SobolevAnàlisi funcionalSobolev spacesFunctional analysisDivision and extension in weighted Bergman-Sobolev spacesinfo:eu-repo/semantics/article0622082019-05-06info:eu-repo/semantics/openAccess