Casacuberta, CarlesRipoll Echeveste, Xavier2021-06-182021-06-182020-06-21https://hdl.handle.net/2445/178613Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Carles Casacuberta[en] Homotopy type theory is a relatively new field which results from the surprising blend of algebraic topology (homotopy) and type theory (type), that tries to serve as a theoretical base for theorem-proving software. This setting is particularly suitable for synthetic homotopy theory. In this work, we describe how the programming language Agda can be used for proof verification, by examining the construction of the fundamental group of the circle $\mathbb{S}^{1}$. Then, trying to obtain the fundamental group of the real projective plane $\mathbb{R} \mathrm{P}^{2}$, we end up exploring a new construction of $\mathbb{R} \mathrm{P}^{2}$ as a higher inductive type.50 p.application/pdfengcc-by-nc-nd (c) Xavier Ripoll Echeveste, 2020http://creativecommons.org/licenses/by-nc-nd/3.0/es/Teoria de l'homotopiaTreballs de fi de grauÀlgebra homològicaLògica informàticaHomotopy theoryBachelor's thesesHomological algebraComputer logicProof verification in algebraic topologyinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess