Figueras, Jordi LluísHaro, ÀlexLuque Jiménez, Alejandro2023-01-262023-01-262016-11-171615-3375https://hdl.handle.net/2445/192693Abstract In this paper, we present and illustrate a general methodology to apply KAM theory in particular problems, based on an a posteriori approach. We focus on the existence of real analytic quasi-periodic Lagrangian invariant tori for symplectic maps. The purpose is to verify the hypotheses of a KAM theorem in an a posteriori format: Given a parameterization of an approximately invariant torus, we have to check non-resonance (Diophantine) conditions, non-degeneracy conditions and certain inequalities to hold. To check such inequalities, we require to control the analytic norm of some functions that depend on the map, the ambient structure and the parameterization. To this end, we propose an efficient computer-assisted methodology, using fast Fourier transform, having the same asymptotic cost of using the parameterization method for obtaining numerical approximations of invariant tori. We illustrate our methodology by proving the existence of invariant curves for the standard map (up to $\varepsilon=0.9716$ ), meandering curves for the non-twist standard map and 2-dimensional tori for the Froeschlé map.71 p.application/pdfeng(c) Springer Verlag, 2016Sistemes hamiltoniansPertorbació (Matemàtica)Anàlisi d'error (Matemàtica)Transformacions de FourierHamiltonian systemsPerturbation (Mathematics)Error analysis (Mathematics)Fourier transformationsRigorous computer assisted application of KAM theory: a modern approachinfo:eu-repo/semantics/article6692552023-01-26info:eu-repo/semantics/openAccess