Cascante, Ma. Carme (Maria Carme)Ortega Aramburu, Joaquín M.2016-04-012016-04-012012-070002-9939https://hdl.handle.net/2445/96825Arcozzi, Rochberg, Sawyer and Wick obtained a characterization of the holomorphic functions $b$ such that the Hankel type bilinear form $T_{b}(f,g)=\int_{\mathbb{D}}(I+R)(f,g)(z)\overline{(I+R)b(z)}dv (z) $ is bounded on $ {\mathcal D}\times {\mathcal D}$, where $ {\mathcal D}$ is the Dirichlet space. In this paper we give an alternative proof of this characterization which tries to understand the similarity with the results of Maz$ '$ya and Verbitsky relative to the Schrödinger forms on the Sobolev spaces $ L_2^1(\mathbb{R}^n)$.12 p.application/pdfeng(c) American Mathematical Society (AMS), 2012Teoria del potencial (Matemàtica)Teoria d'operadorsOperadors linealsPotential theory (Mathematics)Operator theoryLinear operatorsA characterization of bilinear forms on the dirichlet spaceinfo:eu-repo/semantics/article5994522016-04-01info:eu-repo/semantics/openAccess