Corcuera Valverde, José ManuelOller i Sala, Josep Maria2020-03-052020-03-051996https://hdl.handle.net/2445/152097Preprint enviat per a la seva publicació en una revista científica.In this paper the global behaviour of an estimator is studied in framework of Intrinsic Analysis, (7). Two indices of performance of an estimator in a bounded region are analyzed: the average of the intrinsic risk (the loss function is the squared Rao distance) and the maximum risk. The Riemannian volume, provided by the Fisher metric on the manifold associated with the parametric model, allows us to take an average of the intrinsic risk. Cramér-Rao type integral inequalities for the integrated mean squared Rao distance of estimators are derived using variational methods, extending the work of éencov, [3]. Additionally, lower bounds for the maximum risk are also derived, by using integral expressions.23 p.application/pdfeng(c) J. M. Corcuera et al., 1996Distribució (Teoria de la probabilitat)Anàlisi asimptòticaGeometria diferencialEstadística matemàticaUniversitat de Barcelona. Institut de MatemàticaGlobal efficencyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess