Guillamon, AntoniJarque i Ribera, XavierLlibre, JaumeOrtega Cerdà, JoaquimTorregrosa, J.2009-04-162009-04-1619951088-6850https://hdl.handle.net/2445/7764Let f: M → M be a C1 map on a C1 differentiable manifold. The map f is called transversal if for all m ∈ N the graph of fm intersects transversally the diagonal of M × M at each point (x, x) such that x is a fixed point of fm. We study the set of periods of f by using the Lefschetz numbers for periodic points. We focus our study on transversal maps defined on compact manifolds such that their rational homology is $H_0 \approx \mathbb{Q}, H_1 \approx \mathbb{Q} \oplus \mathbb{Q}$ and Hk ≈ {0} for k ≠ 0, 1.29 p.application/pdfeng(c) American Mathematical Society, 1995Anàlisi global (Matemàtica)Global analysisLefschetz NumbersPeriods for transversal maps via Lefschetz numbers for periodic pointsinfo:eu-repo/semantics/article136633info:eu-repo/semantics/openAccess