Carroll, TomMarzo Sánchez, JordiMassaneda Clares, Francesc XavierOrtega Cerdà, Joaquim2023-01-232023-01-2320180240-2963https://hdl.handle.net/2445/192480We find the precise rate at which the empirical measure associated to a $\beta$-ensemble converges to its limiting measure. In our setting the $\beta$-ensemble is a random point process on a compact complex manifold distributed according to the $\beta$ power of a determinant of sections in a positive line bundle. A particular case is the spherical ensemble of generalized random eigenvalues of pairs of matrices with independent identically distributed Gaussian entries.11 p.application/pdfengcc-by (c) Carroll, Tom et al., 2018https://creativecommons.org/licenses/by/4.0/Funcions de diverses variables complexesAplicacions holomòrfiquesTeoria del potencial (Matemàtica)Matrius aleatòriesProcessos puntualsFunctions of several complex variablesHolomorphic mappingsPotential theory (Mathematics)Random matricesPoint processesEquidistribution and $\beta$-ensemblesinfo:eu-repo/semantics/article6695822023-01-23info:eu-repo/semantics/openAccess