Palassini, MatteoMeca Montserrat, Adrià2021-10-052021-10-052021-02https://hdl.handle.net/2445/180404Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutor: Matteo PalassiniIn this work, we delve into the analysis of the propagation of infectious diseases described by the SIR epidemiological model on networks whose connections change over time. We use a fast dynamic message-passing method to estimate the marginal probabilities that each node in one of these networks is in a given state at a certain time. After testing the validity of the predictions given by this approach, we apply them to the problem of inferring the origin of an epidemic on a dynamic network.5 p.application/pdfengcc-by-nc-nd (c) Meca, 2021http://creativecommons.org/licenses/by-nc-nd/3.0/es/Malalties infecciosesAnàlisi dinàmica de xarxesTreballs de fi de grauCommunicable diseasesDynamic network analysisBachelor's thesesDynamic message-passing approach to epidemic spreadinginfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess