Cascante, Ma. Carme (Maria Carme)Ortega Aramburu, Joaquín M.2023-02-082023-02-0820200933-7741https://hdl.handle.net/2445/193292In this paper we show that if $b\in L^2(\R^n)$, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces $H_s^2(\R^n)\times H_s^2(\R^n)$, $0<s<1$ by $$ (f,g)\in H_s^2(\R^n)\times H_s^2(\R^n) \to \int_{\R^n} (Id-\Delta)^{s/2}(fg)({\bf x}) b({\bf x})d{\bf x}, $$ is continuous if and only if the positive measure $|b({\bf x})|^2d{\bf x} $ is a trace measure for $H_s^2(\R^n)$.32 p.application/pdfeng(c) Walter de Gruyter, 2020Anàlisi funcionalEspais de SobolevEquacions en derivades parcialsEquacions diferencials el·líptiquesFunctional analysisSobolev spacesPartial differential equationsElliptic differential equationsBilinear forms on non-homogeneous Sobolev spacesinfo:eu-repo/semantics/article7076642023-02-08info:eu-repo/semantics/openAccess