Miró-Roig, Rosa M. (Rosa Maria)Soares, Helena2016-03-162016-03-1620080002-9939https://hdl.handle.net/2445/96553A very long-standing problem in Algebraic Geometry is to determine the stability of exceptional vector bundles on smooth projective varieties. In this paper we address this problem and we prove that any exceptional vector bundle on a smooth complete intersection $ 3$-fold $ Y\subset\mathbb{P}^n$ of type $ (d_1,\ldots,d_{n-3})$ with $ d_1+\cdots+ d_{n-3}\leq n$ and $ n\geq 4$ is stable.7 p.application/pdfeng(c) American Mathematical Society (AMS), 2008Geometria algebraicaSuperfícies algebraiquesAlgebraic geometryAlgebraic surfacesThe stability of exceptional bundles on hypersurfacesinfo:eu-repo/semantics/article5891502016-03-16info:eu-repo/semantics/openAccess