Cascante, Ma. Carme (Maria Carme)Fàbrega Casamitjana, JoanPeláez Márquez, José Ángel2023-02-082023-02-082019-02-150926-2601https://hdl.handle.net/2445/193240We obtain Littlewood-Paley formulas for Fock spaces $\mathcal{F}^q_{\beta,\omega}$ induced by weights $\omega\in\Ainfty= \cup_{1\le p<\infty}A^{restricted}_{p}$, where $A^{restricted}_{p}$ is the class of weights such that the Bergman projection $P_\alpha$, on the classical Fock space $\mathcal{F}^2_{\alpha}$, is bounded on $$\mathcal{L}^p_{\alpha,\om}:=\left\{f:\, \int_{\C}|f(z)|^pe^{-p\frac{\a}{2}|z|^2}\,\om(z)dA(z)<\infty \right\}. $$ Using these equivalent norms for $\mathcal{F}^q_{\beta,\omega}$ we characterize the Carleson measures for weighted Fock-Sobolev spaces $\mathcal{F}^{q,n}_{\beta,\om}$.4 p.application/pdfeng(c) Springer Verlag, 2019Funcions de variables complexesEspais analíticsAnàlisi harmònicaAnàlisi funcionalFunctions of complex variablesAnalytic spacesHarmonic analysisFunctional analysisLittlewood-Paley formulas and Carleson measures for weighted Fock spaces induced by A^\infty-type weights.info:eu-repo/semantics/article6884242023-02-08info:eu-repo/semantics/openAccess