Macias Marques, Pedro Correia GonçalvesMiró-Roig, Rosa M. (Rosa Maria)2016-03-172016-03-1720110002-9939https://hdl.handle.net/2445/96592We show that given integers $ N$, $ d$ and $ n$ such that $ {N\ge2}, (N,d,n)$ $ \ne(2,2,5)$, and $ {N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $ n$ monomials in $ K\left[X_0,\ldots,X_N\right]$ of degree $ d$ such that their syzygy bundle is stable. Case $ {N\ge3}$ was obtained independently by Coanda with a different choice of families of monomials. For $ {(N,d,n)=(2,2,5)}$, there are $ 5$ monomials of degree $ 2$ in $ K\left[X_0,X_1,X_2\right]$ such that their syzygy bundle is semistable.16 p.application/pdfeng(c) American Mathematical Society (AMS), 2011ÀlgebraAlgebraStability of syzygy bundlesinfo:eu-repo/semantics/article5891612016-03-17info:eu-repo/semantics/openAccess