Bruinier, Jan H. (Jan Hendrik), 1971-Burgos Gil, José I.Kühn, Ulf2009-08-192009-08-1920070012-7094https://hdl.handle.net/2445/9171We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.88 p.application/pdfeng(c) Duke University Press, 2007Geometria algebraica aritmèticaTeoria de la interseccióArithmetic aspects of modular and Shimura varietiesHilbert modular surfacesIntersection theoryArithmetic varieties and schemesBorcherds products and arithmetic intersection theory on Hilbert modular surfacesinfo:eu-repo/semantics/article555914info:eu-repo/semantics/openAccess