Ortega Cerdà, JoaquimPridhnani, Bharti2013-03-192013-03-192013-01-030933-7741https://hdl.handle.net/2445/34299Given a compact Riemannian manifold $M$ of dimension $m \geq 2$, we study the space of functions of $L^2(M)$generated by eigenfunctions of eigenvalues less than $L \geq 1$ associated to the Laplace-Beltrami operator on $M$. On these spaces we give a characterization of the Carleson measures and the Logvinenko-Sereda sets.22 p.application/pdfeng(c) Walter de Gruyter GmbH & Co. KG., 2013Teoria espectral (Matemàtica)Anàlisi global (Matemàtica)Spectral theory (Mathematics)Global analysis (Mathematics)Carleson Measures and Logvinenko-Sereda sets on compact manifoldsinfo:eu-repo/semantics/article5836842013-03-19info:eu-repo/semantics/openAccess