Marinelli, DimitriGarcía Romo, Alba2025-09-162025-09-162025-06-30https://hdl.handle.net/2445/223177Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Dimitri Marinelli i Albert Díaz GuileraThis thesis applies Uniform Manifold Approximation and Projection (UMAP) to analyse and visualize research works from the OpenAlex database. By using various embedding methods (including transformer-based models and hierarchical topic encodings) the study demonstrates that UMAP projections can effectively capture meaningful structures in the data, revealing relationships among research areas and institutions. Results show that capturing complex topic relationships across multiple domains is a challenging task. Nevertheless, the visualizations reveal significant thematic clusters and author groupings that align with our data analysis. Quan- titative evaluation using clustering metrics, such as the silhouette score, confirms the agreement between visual patterns and semantic embeddings. We also show the impact of UMAP hyperparameters on balancing local and global data structure preservation, which influences visualization clarity and interpretability. The resulting interactive, zoomable visual maps provide researchers with a powerful tool to explore and understand the organization of scientific knowledge.54 p.application/pdfengcc-by-nc-nd (c) Alba García Romo, 2025codi: GPL (c) Alba García Romo, 2025http://creativecommons.org/licenses/by-nc-nd/3.0/es/http://www.gnu.org/licenses/gpl-3.0.ca.htmlVisualització de la informacióLiteratura científicaAlgorismes computacionalsTreballs de fi de màsterInformation visualizationScientific literatureComputer algorithmsMaster's thesisExploring Academic Relationships with UMAP: Dimensionality Reduction and Visualization of Topics and Authors in OpenAlexinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccess