Canela Sánchez, JordiFagella Rabionet, NúriaGarijo Real, Antonio2015-10-192016-06-172015-06-171023-6198https://hdl.handle.net/2445/67324The goal of this paper is to investigate the parameter plane of a rational family of perturbations of the doubling map given by the Blaschke products $B_a(z)=z^3\frac{z-a}{1-\bar{a}z}$. First we study the basic properties of these maps such as the connectivity of the Julia set as a function of the parameter $a$. We use techniques of quasiconformal surgery to explore the relation between certain members of the family and the degree 4 polynomials $\left(\overline{\overline{z}^2+c}\right)^2+c$. In parameter space, we classify the different hyperbolic components according to the critical orbits and we show how to parametrize those of disjoint type.27 p.application/pdfeng(c) Taylor and Francis, 2015Sistemes dinàmics diferenciablesFuncions de variables complexesDinàmica topològicaFractalsDifferentiable dynamical systemsFunctions of complex variablesTopological dynamicsFractalsOn a family of rational perturbations of the doubling mapinfo:eu-repo/semantics/article6548522015-10-19info:eu-repo/semantics/openAccess