Pau, Jordi2016-03-292016-03-2920131661-8254https://hdl.handle.net/2445/96731We study Hankel operators on the standard Bergman spaces $A^{2}_{\alpha}, \alpha > -1$. A description of the boundedness and compactness of the (big) Hankel operator $H_f$ with general symbols $f \in L^2 (\mathbb{D}, d A_\alpha)$ is obtained. Also, we provide a new proof of a result of Arazy-Fisher-Peetre on the membership in Schatten $p$-classes of Hankel operators with conjugate analytic symbols.18 p.application/pdfeng(c) Birkhäuser Basel, 2013Funcions de variables complexesFuncions analítiquesOperadors linealsNuclis de BergmanFunctions of complex variablesAnalytic functionsLinear operatorsBergman kernel functionsHankel operators on standard Bergman spacesinfo:eu-repo/semantics/article6052232016-03-29info:eu-repo/semantics/openAccess