Cascante, Ma. Carme (Maria Carme)Fàbrega Casamitjana, JoanPascuas Tijero, Daniel2022-03-142022-03-142021-120022-247Xhttps://hdl.handle.net/2445/184095By means of Muckenhoupt type conditions, we characterize the weights $\omega$ on $\C$ such that the Bergman projection of $F^{2,\ell}_{\alpha}=H(\C)\cap L^2(\C,e^{-\frac{\alpha}2|z|^{2\ell}})$, $\alpha>0$, $\ell>1$, is bounded on $L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}}\omega(z))$, for $1<p<\infty$. We also obtain explicit representation integral formulas for functions in the weighted Bergman spaces $A^p(\omega)=H(\C)\cap L^p(\omega)$. Finally, we check the validity of the so called Sarason conjecture about the boundedness of products of certain Toeplitz operators on the spaces $F^{p,\ell}_\alpha=H(\C)\cap L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}})$.application/pdfengcc-by-nc-nd (c) Cascante, C et al., 2021https://creativecommons.org/licenses/by-nc-nd/4.0/Representacions integralsNuclis de BergmanOperadors de ToeplitzIntegral representationsBergman kernel functionsToeplitz operatorsMuckenhoupt type weights and Berezin formulas for Bergman spacesinfo:eu-repo/semantics/article7132062022-03-14info:eu-repo/semantics/openAccess