Bulashenko, OlegVila Vidal, Manel2015-10-202015-10-202015-01https://hdl.handle.net/2445/67344Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Any: 2015, Tutor: Oleg BulashenkoWe give a general description of pattern forming systems and describe the linear stability analysis that allows to determine whether a system in a uniform state will spontaneously evolve to a patterned state. Such an analysis is performed on Turing systems and conditions for pattern formation are derived. As an example of a Turing system, we consider the Brusselator model, for which a variety of patterns are found numerically for different values of the bifurcation parameters.5 p.application/pdfengcc-by-nc-nd (c) Vila Vidal, 2015http://creativecommons.org/licenses/by-nc-nd/3.0/es/Models no lineals (Estadística)Física matemàticaTreballs de fi de grauNonlinear models (Statistics)Mathematical physicsBachelor's thesesTuring, Alan Mathison, 1912-1954Spontaneous pattern formation in Turing systemsinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess