Benini, Anna MiriamFagella Rabionet, Núria2020-12-032020-12-032020-06-010022-2518https://hdl.handle.net/2445/172530Let $f$ be a map with bounded set of singular values for which periodic dynamic rays exist and land. We prove that each non-repelling cycle is associated to a singular orbit which cannot accumulate on any other non-repelling cycle. When $f$ has finitely many singular values this implies a refinement of the Fatou-Shishikura inequality.16 p.application/pdfeng(c) Indiana University Mathematics Journal, 2020Sistemes dinàmics diferenciablesFuncions de variables complexesEquacions funcionalsDifferentiable dynamical systemsFunctions of complex variablesFunctional equationsSingular values and non-repelling cycles for entire transcendental mapsinfo:eu-repo/semantics/article6835332020-12-03info:eu-repo/semantics/openAccess