Mundet i Riera, IgnasiDaura Serrano, Jordi2019-06-212019-06-212019-01-18https://hdl.handle.net/2445/135717Treballs Finals de Grau de Matemà tiques, Facultat de Matemà tiques, Universitat de Barcelona, Any: 2019, Director: Ignasi Mundet i Riera[en] In this text, we give the necessary tools to prove and understand the Mann-Su theorem. In the context of transformation groups theory, the Mann-Su theorem gives a restriction on which finite groups can act effectively on a manifold. Particularly, we will find an upper bound $N$ that only depends on the manifold $M$ such that groups of the form $(\mathbb{Z}_p )^{r}$ can not act effectively on $M$ if $r > N$. Restricting ourselves to the case of smooth manifolds and actions, we will take a slightly different approach compared to the original paper where L.N Mann and J.C. Su proved the theorem.57 p.application/pdfengcc-by-nc-nd (c) Jordi Daura Serrano, 2019http://creativecommons.org/licenses/by-nc-nd/3.0/es/Grups finitsTreballs de fi de grauGrups de transformacionsGrups de LieFinite groupsBachelor's thesesTransformation groupsLie groupsThe Mann-Su theoreminfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess