Costa Farràs, LauraMiró-Roig, Rosa M. (Rosa Maria)2026-01-262026-01-262021-06-010138-4821https://hdl.handle.net/2445/226124We relate the existence of rank $r$ Ulrich bundles on a Veronese 3-fold $\left(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d)\right)$ with the existence of rank $r$ instanton bundles on $\mathbb{P}^3$. This relation will allow us to prove the existence of rank $r$ Ulrich bundles on $\left(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d)\right)$ for certain values of $(d, r)$. For instance, we explicitly determine the integers $r$ such that rank $r$ Ulrich bundles on $\mathbb{P}^3$ for the Veronese embedding $\mathcal{O}_{\mathbb{P}^3}(3)$ exist and, in particular, we solve the first open case of Conjecture 4.1.12 p.application/pdfeng(c) Springer, 2021Topologia algebraicaGeometria projectivaGeometria algebraicaAlgebraic topologyProjective geometryAlgebraic geometryInstanton bundles vs Ulrich bundles on projective spacesinfo:eu-repo/semantics/article7097632026-01-26info:eu-repo/semantics/openAccess