Tatjer i Montaña, Joan CarlesGarcı́a Fuentes, Juan2018-11-022018-11-022018-06-27https://hdl.handle.net/2445/125804Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Joan Carles Tatjer i Montaña[en] Atractting periodic orbits are a very important tool in the study of the dynamic of one dimensional maps, as orbits in maps that have them are more predictable and maps without them can exhibit a chaotic behaviour. We will prove that exist a positive Lebesgue measure set of parameters such that the logistic fuction $\lim_{a} (x) = ax(1 - x)$ doesn’t have atracting periodic orbits using the results of Benedicks and Carleson.53 p.application/pdfcatcc-by-nc-nd (c) Juan Garcı́a Fuentes, 2018http://creativecommons.org/licenses/by-nc-nd/3.0/es/ÒrbitesTreballs de fi de grauSistemes dinàmics hiperbòlicsTeoria ergòdicaCaos (Teoria de sistemes)OrbitsBachelor's thesesHyperbolic dynamical systemsErgodic theoryChaotic behavior in systemsAbundància de comportament aperiòdic en l'aplicació logísticainfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess