Carroll, TomMassaneda Clares, Francesc XavierOrtega Cerdà, Joaquim2020-12-072020-12-072020-03-130024-6093https://hdl.handle.net/2445/172580Abstract. We improve some recent results of Sagiv and Steinerberger that quantify the following uncertainty principle: for a function $f$ with mean zero, either the size of the zero set of the function or the cost of transporting the mass of the positive part of $f$ to its negative part must be big. We also provide a sharp upper estimate of the transport cost of the positive part of an eigenfunction of the Laplacian. This proves a conjecture of Steinerberger and provides a lower bound of the size of the nodal set of the eigenfunction.16 p.application/pdfeng(c) London Mathematical Society, 2020Teoria de la mesura geomètricaEquacions en derivades parcialsCàlcul de variacionsOptimització matemàticaAnàlisi global (Matemàtica)Geometric measure theoryPartial differential equationsCalculus of variationsMathematical optimizationGlobal analysis (Mathematics)An enhanced uncertainty principle for the Vaserstein distanceinfo:eu-repo/semantics/article7028462020-12-07info:eu-repo/semantics/openAccess