Martínez de Albéniz, F. JavierRafels, CarlesYbern, Neus2016-01-182016-01-1820151136-8365https://hdl.handle.net/2445/68834We show that the family of assignment matrices which give rise to the same nucleolus form a compact join-semilattice with one maximal element, which is always a valuation. -see p.43, Topkis, 1998-. We give an explicit form of this valuation matrix. The above family is in general not a convex set, but path-connected, and we construct minimal elements of this family. We also analyze the conditions to ensure that a given vector is the nucleolus of some assignment game.32 p.application/pdfengcc-by-nc-nd, (c) Martínez de Albéniz et al., 2015http://creativecommons.org/licenses/by-nc-nd/3.0/Teoria de jocsAssignació de recursosMatemàtica financeraModels matemàticsEstudis de viabilitatGame theoryRessource allocationBusiness mathematicsMathematical modelsFeasibility studiesInsights into the nucleolus of the assignment gameinfo:eu-repo/semantics/workingPaper2016-01-18info:eu-repo/semantics/openAccess