Llerena Garrés, FrancescNúñez, Marina (Núñez Oliva)Rafels, Carles2013-12-132013-12-1320131136-8365https://hdl.handle.net/2445/48439[cat] En aquest treball es demostra que en el domini dels jocs d’assignació equilibrats multisectorials (Quint, 1991), el core és l’única solució no buida que satisfà derived consistency i projection consistency. També es caracteritza el core en tota la classe dels jocs d’assignació multisectorials amb els axiomes de singleness best, individual antimonotonicity i derived consistency. Com a casos particulars, s’obtenen dues noves axiomàtiques del core per als jocs d’assignació bilaterals (Shapley and Shubik, 1972).[eng] On the domain of balanced multi-sided assignment games (Quint, 1991), the core is characterized as the unique non-empty solution satisfying derived consistency and projection consistency. As a consequence, a new characterization of the core of two-sided assignment games (Shapley and Shubik, 1972) is provided by using simultaneously the aforementioned consistency axioms. We also characterize the core on the whole domain of multi-sided assignment games in terms of singleness best, individual anti-monotonicity and derived consistency. Again, as a particular case we obtain a new axiomatization for the bilateral case without making use of the non-emptiness axiom.21 p.application/pdfengcc-by-nc-nd, (c) Llerena Garrés, 2013http://creativecommons.org/licenses/by-nc-nd/3.0/Teoria de jocsPresa de decisions (Estadística)Jocs d'estratègia (Matemàtica)Assignació de recursosMatemàtica financeraGame theoryStatistical decisionGames of strategy (Mathematics)Ressource allocationBusiness mathematicsConsistency and the core of multi-sided assignment marketsinfo:eu-repo/semantics/workingPaper2013-12-13info:eu-repo/semantics/openAccess