Gispert Brasó, JoanCanal Ferrer, Genı́s2022-04-072022-04-072021-06-20https://hdl.handle.net/2445/184727Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Joan Gispert Brasó[en] Glivenko’s theorem says that the fact that a proposition is provable in classical logic is equivalent to the double negation of this proposition being provable in intuitionistic logic. We present the intuitionistic logic and introduce two syntactic calculus: the Hilbert calculus and the natural deduction calculus. We give as well two semantics for the intuitionistic logic. A relational one, based on Kripke models and an algebraic one, based on Heyting algebras. To conclude we give three different proofs of Glivenko’s theorem. A syntactic one, a semantic one based on Kripke models and a semantic one based on Heyting algebras.50 p.application/pdfcatcc-by-nc-nd (c) Genı́s Canal Ferrer, 2021http://creativecommons.org/licenses/by-nc-nd/3.0/es/Lògica matemàticaTreballs de fi de grauMatemàtica intuïcionistaLògica algebraicaMathematical logicBachelor's thesesIntuitionistic mathematicsAlgebraic logicLògica intuïcionista. Teorema de Glivenkoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess