Cirici, JoanaGuerrero Domínguez, Daniel2022-06-102022-06-102022-01-24https://hdl.handle.net/2445/186532Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Joana Cirici[en] Conformal geometry is the branch of mathematics that studies the transformations on manifolds that preserve the angles. It has a myriad of applications, both in mathematics and in physics. In this work we present an introduction to conformal geometry and describe its relation to Penrose diagrams, which are rep- resentations of spacetimes that preserve their causal structure. To this end, we start by providing the necessary tools for doing this work from semi-Riemannian geometry and conclude by giving examples of these diagrams.58 p.application/pdfengcc-by-nc-nd (c) Daniel Guerrero Domínguez, 2022http://creativecommons.org/licenses/by-nc-nd/3.0/es/Geometria conformeTreballs de fi de grauGeometria diferencial globalRelativitat (Física)Conformal geometryBachelor's thesesGlobal differential geometryRelativity (Physics)Introduction to Conformal Geometry and Penrose Diagramsinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess