Arrondo, EnriqueMiró-Roig, Rosa M. (Rosa Maria)Pons Llopis, JoanUniversitat de Barcelona. Departament d'Àlgebra i Geometria2018-05-182018-05-182011-06-21https://hdl.handle.net/2445/122432[eng] The subject of this thesis lies at the junction of mainly three topics: construction of large families of Arithmetically Cohen-Macaulay indecomposable vector bundles on a given projective variety X, the shape (i.e, the graded Betti numbers) of the minimal free resolution of a general set of points onX and the (ir)reducibility of the Hilbert scheme Hilbs(X) of zero-dimensional subschemes Z (belongs) X of length s. (Fore more details see the Full Summary enclosed as a complementary file)162 p.application/pdfeng(c) Pons, 2011Mòduls de Cohen-MacaulayEsquemes de HilbertCohen-Macaulay modulesHilbert schemesInvariantsUlrich bundles and varieties of wild representation typeinfo:eu-repo/semantics/doctoralThesis2018-05-18info:eu-repo/semantics/openAccesshttp://hdl.handle.net/10803/565411