Moraschini, TommasoCarai, LucaKurtzhals, Miriam2024-07-222024-07-222024-07https://hdl.handle.net/2445/214663Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2023-2024. Tutor: Luca Carai and Tommaso MoraschiniAs the theorems we aim to prove require a variety of tools and background theory, we will start by recalling some basics of first-order logic (Section 2.1), model theory (Section 2.2), and universal algebra (Section 2.3). We will then continue presenting the protagonist of this thesis, the epimorphism surjectivity property, and making some easy but useful observations concerning this property (Section 2.4). Finally, we will establish a correspondence between the (weak) ES property in algebra and the (finite) Beth definability property in logic, providing motivation for the study of the ES property from a logical standpoint (Section 2.5)81 p.application/pdfengcc by-nc-nd (c) Kurtzhals, 2024http://creativecommons.org/licenses/by-nc-nd/3.0/es/LògicaÀlgebra universalCategories (Matemàtica)Treballs de fi de màsterLogicUniversal algebraCategories (Mathematics)Master's thesisEpimorphism Surjectivity in Logic and Algebrainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccess